XRDS

Crossroads The ACM Magazine for Students

Sign In

Association for Computing Machinery

Magazine: Features
Scaling biodiversity monitoring for the data age

Scaling biodiversity monitoring for the data age

By ,

Full text also available in the ACM Digital Library as PDF | HTML | Digital Edition

Tags: Database management system engines, Environmental sciences, Sustainability

Scaling Biodiversity Monitoring for the Data Age | XRDS: Crossroads, The ACM Magazine for Students skip to main content
research-article
Open access

Scaling Biodiversity Monitoring for the Data Age

Published: 24 June 2021 Publication History

Abstract

Technological advances have made it possible to collect massive amounts of biodiversity data. How can analysis efforts keep up?

Formats available

You can view the full content in the following formats:

References

[1]
Almond, R. E. A., Grooten, M., and Peterson, T. (Eds). Living Planet Report 2020-Bending the curve of biodiversity loss. World Wildlife Fund, 2020.
[2]
IUCN Red List Committee. The IUCN Red List of Threatened Species - Strategic Plan 2017-2020. Prepared by the IUCN Red List Committee, 2017.
[3]
Alaska Department of Fish and Game. Kenai (RM 14) River. Alaska Fisheries Sonar; https://www.adfg. alaska.gov/index.cfm?adfg=sonar.site&site=17
[4]
Hill, A. P., Prince, P., Covarrubias, E. P., Doncaster, C. P., Snaddon, J. L., and Rogers, A. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution 9, 5 (2018), 1199–1211.
[5]
Beery, S., Morris, D., and Yang, S. Efficient pipeline for camera trap image review. In the Data Mining and Artificial Intelligence for Conservation Workshop at Knowledge Discovery in Databases (KDD). 2019.
[6]
Beery, S., Van Horn, G., and Perona, P. Recognition in terra incognita. In Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2020, 456–473.
[7]
Beery, S., Liu, Y., Morris, D., Piavis, J., Kapoor, A., Joshi, N., Meister, M., and Perona, P. Synthetic examples improve generalization for rare classes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, 863–873.
[8]
Mac Aodha, O., Cole, E., and Perona, P. Presence-only geographical priors for fine-grained image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, 9596–9606.
[9]
Beery, S., Wu, G., Rathod, V., Votel, R., and Huang, J. Context R-CNN: Long term temporal context for per-camera object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020, 13075–13085.
[10]
Cole, E., Deneu, B., Lorieul, T., Servajean, M., Botella, C., Morris, D., Jojic, N., Bonnet, P., and Joly, A. The GeoLifeCLEF 2020 Dataset. arXiv preprint arXiv:2004.04192. 2020.
[11]
Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., and Mac Aodha, O. Benchmarking representation learning for natural world image collections. In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR). IEEE, 2021.

Cited By

View all
  • (2024)Eyes on nature: Embedded vision cameras for terrestrial biodiversity monitoringMethods in Ecology and Evolution10.1111/2041-210X.1443615:12(2262-2275)Online publication date: 28-Oct-2024
  • (2024)Insect Identification in the Wild: The AMI DatasetComputer Vision – ECCV 202410.1007/978-3-031-72913-3_4(55-73)Online publication date: 29-Sep-2024
  • (2024)Opportunities for synthetic data in nature and climate financeFrontiers in Artificial Intelligence10.3389/frai.2023.11687496Online publication date: 9-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image XRDS: Crossroads, The ACM Magazine for Students
XRDS: Crossroads, The ACM Magazine for Students  Volume 27, Issue 4
Computing and Sustainability
Summer 2021
59 pages
ISSN:1528-4972
EISSN:1528-4980
DOI:10.1145/3472736
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 June 2021
Published in XRDS Volume 27, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article
  • Popular
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)660
  • Downloads (Last 6 weeks)45
Reflects downloads up to 09 Jul 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Eyes on nature: Embedded vision cameras for terrestrial biodiversity monitoringMethods in Ecology and Evolution10.1111/2041-210X.1443615:12(2262-2275)Online publication date: 28-Oct-2024
  • (2024)Insect Identification in the Wild: The AMI DatasetComputer Vision – ECCV 202410.1007/978-3-031-72913-3_4(55-73)Online publication date: 29-Sep-2024
  • (2024)Opportunities for synthetic data in nature and climate financeFrontiers in Artificial Intelligence10.3389/frai.2023.11687496Online publication date: 9-Jan-2024
  • (2023)A dataset for benchmarking Neotropical anuran calls identification in passive acoustic monitoringScientific Data10.1038/s41597-023-02666-210:1Online publication date: 6-Nov-2023
  • (2023)The herbarium of the futureTrends in Ecology & Evolution10.1016/j.tree.2022.11.01538:5(412-423)Online publication date: May-2023
  • (2022)Participatory Sensing Platform Concept for Wildlife Animals in the Himalaya Region, NepalDistributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-being and Health, Art and Creativity10.1007/978-3-031-05431-0_6(87-98)Online publication date: 26-Jun-2022

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media